If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2+80x=0
a = 20; b = 80; c = 0;
Δ = b2-4ac
Δ = 802-4·20·0
Δ = 6400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6400}=80$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(80)-80}{2*20}=\frac{-160}{40} =-4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(80)+80}{2*20}=\frac{0}{40} =0 $
| x/4+4=7/4 | | -2(y+2)=0 | | 2n=3.8 | | x+50000+364758485947837=9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999 | | 79+1x=40 | | x+50000=364758485947837 | | 12c+9+7c+4=0 | | 7a=5+5a | | 1/2(x+3)=3 | | 9(y-5)+3=2+y-44 | | 7a+2=12+5a | | 2(x+5)+3=21 | | 28=x/2+4 | | -4x+18=42 | | x+4=-3(3x+3) | | 37+y=87;y | | 8-w/10=3-5 | | 2x-x^2=2 | | 3x-16=8-5x | | 6x(2)+9x+5=(2x+3)(3x+2) | | 5x-4x-1=7 | | 22x+6=16 | | 27+(54+d)=817+45)+82 | | 360/30=a | | K+9k-6=74 | | ((3)/(8))+((1)/(2t))=((2)/(t)) | | (3w−12)(w−12)=720 | | 10(-2x+1)+4=19(x+1) | | -3d-8d=77 | | 9x-12=41x | | 19b-7b=60 | | ½(x+8)-15=-3 |